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Abstract. The validity of the Bianchi identity, which is intimately connected with the zig zag symmetry, is
established, for piecewise continuous contours, in the context of Polakov’s gauge field–string connection in
the large ’t Hooft coupling limit, according to which the chromoelectric ‘string’ propagates in five dimensions
with its ends attached on a Wilson loop in four dimensions. An explicit check in the wavy line approximation
is presented.

1 Introduction

The employment of string theoretical methods to build in-
roads to QCD, especially at the non-perturbative level, is
a problem that has been posed by Polyakov [1] over two
and a half decades ago. Since then, string theory has made
notable advancements in this regard, both as regards appli-
cations to high energy processes [2, 3] and in the direction
of expediting high order, perturbative computations; see,
e.g. [4] for a review presentation, wherein relevant aspects
to collider physics applications are also discussed; for re-
cent advances on this subject, see [5].
In an independent development and in the context of

’t Hooft’s [6] large N , λ≡ g2YMN � 1 limit, Polyakov [7]
proposed, in an attempt to capture the essential character-
istics of a string relevant to QCD and one which accom-
modates the Liouville mode, a setting according to which
the string appropriate for representing the chromoelectric
flux lines of a pure Yang–Mills theory must propagate in
a 5-dimensionalal environment the metric of which reads

ds2 = a(y)
(
dy2+ dx2µ

)
, a(y)∼ y−2(y→ 0) , (1)

with the gauge theory ‘living’ at the boundary, y = 0, of
this space. The above description will contain additional
dimensions, if the 4D theory has extra matter fields, as
happens in the AdS/CFT case [8]. The requirement of con-
formal symmetry fixes

ds2 = a(y) =
R2

y2
, R2 = α′

√
λ. (2)

The Wilson loop functional [9]

W [C] =
1

N

〈
TrP exp i

∮

C

Aµdxµ
〉

A
(3)

a e-mail: akaran@phys.uoa.gr

plays a basic role in the gauge–string correspondence in
Polyakov’s scheme, wherein the open string propagating in
a 5-dimensional background (2) has its two ends attached
onto a loop contour. The latter, as already mentioned, lives
in four dimensions.
The working assumption for quantifying such a pro-

posal is that, in the large λ limit, the Wilson loop func-
tional is expected to behave as

W [C]∝ e−
√
λAmin(C) , (4)

where Amin is the minimal area swept by the string and
bounded by the contour C. This statement constitutes
a zeroth, WKB-type, approximation to the problem.
Now, the loop casting of QCD has a long history, which

is intimately associated with theoretical efforts to probe
its non-perturbative content. It constitutes a well defined
strategy of formulating QCD and enjoys, in its discrete
version, universal acceptance as the methodology for inves-
tigating non-perturbative issues surrounding strong force
dynamics.
A corresponding, direct continuum casting of QCD,

based on the Wilson functional, gives rise to the loop equa-
tion formalism that has been extensively pursued by Ma-
keenko and Migdal [10–12], as well as by Polyakov in [1],
and that has provided a multitude of powerful insights to
the theory. Within the framework of this scheme, a prop-
erty of vital importance Wilson functionals must possess
is that of zig zag, or equivalently backtracking, invari-
ance. The same symmetry plays a fundamental role in
Polyakov’s choice of the background (2) that accommo-
dates the fluctuations of the random surfaces bounded
by the contour C. Such a requirement characterizes, in
general, the so-called Stokes-type functionals whose basic
property is, precisely, that they do not change when a small
path passing back and forth is added to any smooth section
of the loop at any given point. In mathematics, this prop-
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erty is associated with what are known as Chen integrals.
Quantitatively speaking, the backtracking invariance in
the loop formalism assumes the form (see, e.g., [11, 12])

εκλµν∂xλ
δ

δσµν(x)
W [C] = 0 , (5)

with δσµν and ∂
x
λ the surface and path derivatives whose

action will be specified later. From the point of view of
QCD the relevance of Stokes-type functionals is traced to
the fact that they facilitate the proof of the non-abelian
Stokes theorem; hence their name.
In order to establish the validity of the non-abelian

Stokes theorem in the loop formalism of QCD the key role
is played by the Bianchi identity, which assures the commu-
tativity of differentiations performed on a Wilson loop, in
a surface independent manner [11–14]. In fact, one easily
verifies that

εκλµν∂xλ
δ

δσµν
W =

1

N
εκλµν TrP

〈
∇λFµν exp i

∮

C

Aµdxµ

〉

A

= 0 . (6)

Demonstrating the validity of the Bianchi identity,
equivalently zig zag invariance, within the framework of
the field–string connection according to the proposal in [7],
is the central objective of this work. More specifically, the
stated objective of this paper is to establish that

εκλµν∂xλ
δ

δσµν
exp(−

√
λAmin)≈ 0 ,

in the limit λ→∞.
Our exposition is organized as follows. In the next sec-

tion we introduce the area derivative operator appropriate
for acting on the Wilson loop functional. To begin with, on
the field theoretical side it is through this action that one
establishes the loop equations. On the string side, it will
turn out that it plays a key role in establishing the Bianchi
identity. The variational analysis for the verification of
both the loop equations and the Bianchi identity will be
greatly facilitated by employing a methodology, developed
in [15, 16], which directly addresses a situation involving
a surface bounded by a closed contour in four (D) dimen-
sions that variationally protrudes into five (D+1) dimen-
sions. This approach will be reviewed in Sect. 2, where the
all important quantity, to be designated as the g-function,
will emerge. This quantity, as it turns out, contains all
the dynamics in the advocated approach. The area deriva-
tive operator will also be introduced in this section and
some realizations of a general nature will be made regard-
ing its action on the Wilson loop functional. The next
section (Sect. 3) is devoted to the study of the normal vari-
ations, with respect to the boundary of the Wilson loop,
of the g-function. These variations will play a pivotal role
in our subsequent quantitative considerations. In Sect. 4
we apply the mathematical formalism developed to this
point to verify, on the string side, the loop equation of Ma-
keenko and Migdal [10]. At the same time we shall derive
a result, conditional, at this stage, concerning the Bianchi
identity. The conditionality of the result will be attributed

to the fact that the vector basis adopted to describe the
5-dimensional surface spanned by the string is too gen-
eral to control the precise manner by which it “collapses”
onto the corresponding 4-dimensional Wilson loop config-
uration. Accordingly, only a condition for the validity of
the Bianchi identity can be obtained. Full confirmation be-
comes precise in Sect. 5, where a certain Wilson contour of
sufficient generality introduced in [15] and characterized as
‘wavy line’ configuration, is employed to rigorously demon-
strate the validity of the Bianchi identity. Some general,
concluding comments are presented in the final section.

2 String action functional
and the area derivative operator

In this section we present the general form of the area
derivative operator, which is to act on a Wilson loop con-
figuration. We begin our discussion by presenting a con-
densed summary of the setting promoted in [15, 16], which
is nicely suited for conducting analytical considerations
pertaining to the proposal of [7]. The relevant string action
functional according to this reference is (Euclidean formal-
ism employed throughout)

S[x(ξ), y(ξ)] =
1

2

√
λ

∫

D

d2ξGMN (x(ξ))∂ax
M (ξ)∂ax

N (ξ)

=
1

2

√
λ

∫

D

d2ξ

y2(ξ)

[
(∂ax(ξ))

2+(∂ay(ξ))
2
]
,

(7)

where xM = (y,x) = (y, xµ), M,N = 0, 1, . . . , D; µ = 1,
. . . , D, with the y-coordinate taking a zero value at the
boundary and growing toward infinity as one moves deeper
into the interior of the AdS5 space.

1

In [15, 16] a mathematical machinery was developed for
the purpose of studying loop dynamics in reference to the
above action functional. We shall adopt the strategy intro-
duced in these works, the immediate aim being to deter-
mine the action of the area derivative operator [17]

δ

δσµν(x(σ))
= lim
η→0

∫ η

−η
dhh

δ2

δxµ
(
σ+ h2

)
δxν
(
σ− h2

) (8)

on a piecewise regular Wilson loop contour.
The loop functional is to be minimized under the

boundary conditions x|∂D = c(α(σ)) and y|∂D = 0, with
the parametrization chosen so that

Amin[c(σ)] = min
{α(σ)}

min
{x,y}

S[x(ξ), y(ξ)] . (9)

The functional Amin is invariant under reparametrizations
of the boundary, a property that can be easily deduced

1 To connect, in a general sense, our present work with the
AdS/CFT conjecture [8], we shall, in a loose sense, refer to the
5-dimensional space-time background of Polyakov’s scheme,
wherein conformal invariance is implicitly assumed, as AdS5.
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from the above minimization condition (c′µ(s) =
d
dscµ(s)):

c′µ(σ)
δAmin

δcµ(σ)
= 0 . (10)

Following [15, 16], we adopt the static gauge y(t, σ) = t
and place the loop on the boundary of the AdS5 space, i.e.
we set t= 0. One accordingly writes

x(t, σ) = c(σ)+
1

2
f(σ)t2+

1

3
g(σ)t3+

1

4
h(σ)t4+ . . . ,

(11)

where, for now, the curve c(σ) is assumed to be differen-
tiable everywhere. If there are cusps on the loop contour
(i.e., discontinuities in the first derivative) the above ex-
pansion must be understood piecewise. Surface minimiza-
tion leads to the elimination of the linear term in the ex-
pansion and determines its next coefficient:

f =
d

dσ

c′

c′2
. (12)

The coefficient g(σ) is, at this point, unspecified. Imposi-
tion of the Virasoro constraints leads to

c′ ·g= 0 . (13)

It turns out that the latter relation simply expresses the
reparametrization invariance of the minimal area (9); and,
hence, the quantity g(σ), to be referred to as the g-function
from now on, remains undetermined. More illuminating,
for our purposes, is an interim result through which (13) is
derived and which reads as follows:

δAmin

δc(σ)
=−
√
c′2g(σ) . (14)

The above relation underlines the dynamical significance of
the g-function: it provides a measure of the change of Amin
when the Wilson loop contour is altered as a result of some
interaction that reshapes its geometrical profile.
Consider, now, the action of the area derivative on the

Wilson loop functional:

δ

δσµν(σ)
W [C]

= lim
η→0

∫ η

−η
dhh

[

−
√
λ

δ2Amin

δcµ
(
σ+ h2

)
δcν
(
σ− h2

)

+λ
δAmin

δcµ
(
σ+ h2

)
δAmin

δcν
(
σ− h2

)

]

W [C] .

(15)

As is known [18], the area derivative is a well defined op-
eration only for smooth contours, i.e. ones that are differ-
entiable everywhere. In such a case the last term in the
above equation gives a zero contribution. If the loop under
consideration has cusps, as happens in the framework of
non-trivial situations, the operation must be understood
piecewise; see [19] for such a realization.

To further facilitate our considerationswe follow [15, 16]
by choosing the coordinate σ on the minimal surface such
that

c′2(σ) = 1 , ẋ(t, σ) ·c′(σ) = 0 .

We also introduce an orthonormal basis, which adjusts it-
self along the tangential (t) and normal (na, a = 1, . . . ,
D−1) directions defined by the contour, as follows:

{t,na} , a= 1, . . . , D−1 ,

t=
c′
√
c2
, na · t= 0 , na ·nb = δab . (16)

We now write

δ

δcµ
= naµ

(
na ·

δ

δc

)
+ tµ

(
t ·
δ

δc

)
≡ naµ

δ

δna
+ tµ

δ

δt
, (17)

and upon using (12) and (13), as well as setting s= σ+h/2
and s′ = σ−h/2, we determine

δ2Amin

δcµ(s)δcν(s′)

=−
δga(s)

δnb(s′)
naµ(s)n

b
ν(s
′)+Rµν(s, s

′)δ′(s− s′) ,

(18)

where

Rµν(s, s
′) = 2g(s) ·na(s′)tµ(s)n

a
ν(s
′)

+g(s) · t(s′)tµ(s)tν(s
′)

− t(s) ·na(s′)gµ(s)n
a
ν(s
′) . (19)

From the defining expression, see (8), one immediately
realizes that only terms ∼ δ′(s− s′) in an antisymmetric
combination R[µν] will give non-zero contributions to the
area derivative. It, thus, becomes obvious that the last
term in (18) produces the result

R[µν](σ, σ) = t[µ(σ)gν](σ) . (20)

Turning our attention to the first term on the r.h.s.
of (18) we note that non-vanishing contributions should
have the form

(raqb− rbqa)naµn
b
νδ
′(s− s′) , (21)

where ra = na · r and qa = na ·q. These functions must
be determined from the coefficients of the expansion (11);
otherwise the above contribution would be contour in-
dependent, having no impact on a calculation associated
with non-trivial dynamics. In conclusion, a simple qualita-
tive analysis, based on the scale invariance of Amin, indi-
cates that a contribution of the type (21) does not exist.
This qualitative observation can be further substantiated
through a straightforward argument based on dimensional
grounds. Indeed, from (11) it can be observed that under
a change of scale of the form c→ λc, (t, σ)→ (λt, λσ) one
has

c′→ c′ , f →
1

λ
f , g→

1

λ2
g , . . .
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On the other hand, now, the area derivative, being of sec-
ond order, should scale ∼ 1

λ2
. In turn, this means that one

of the quantities r or q, which must arise through trans-
verse variations of g, should be aligned with the tangential
vector t, which, by definition, has zero transverse compo-
nents. Thus, the only antisymmetric combination with the
right scaling behavior must be either of the form raf ′b−
rbf ′a, or ragb− rbga, where ra ∼ nai c

′
i, with i= 2, . . . But

such expressions must be excluded, since they pick out
a certain direction in the 4-dimensional space, whereas the
area derivative must be a second rank tensor.
Referring to the formula for the area derivative, one im-

mediately surmises that the first term on the r.h.s. of (18)
gives a null contribution, since the antisymmetric term is
proportional to δ(s−s′), and not δ′(s−s′).We have, there-
fore, determined that

lim
η→0

∫ η

−η
dhh

δ2Amin

δcµ
(
σ+ h2

)
δcν
(
σ− h2

) = t[µ(σ)gν](σ) . (22)

In order to check the validity of the Bianchi identity
we need a quantitative expression of the, with respect to
the 4- (D-) dimensional surface of the Wilson loop, normal
variations of the g-function. It will turn out that the an-
tisymmetric part of the variations will play a determining
role in the derivation of the Bianchi identity. A quantita-
tive study of these normal deviations will be conducted in
the next section and the relevant results will further justify
the line of arguments promoted in this section.

3 The normal variation of the g-function

We start the considerations in this section by remarking
that the path derivative entering the Bianchi identity can
be defined by [11, 12]

∂c(s)µ = lim
ε→0

∫ s+ε

s−ε
ds′

δ

δcµ(s′)
. (23)

Accordingly, as becomes obvious from (22) in the previ-
ous section, one needs an explicit expression for the normal
variations of the g-function. In fact, their antisymmetric
part, it will turn out, will play a decisive role concerning
the eventual derivation of the Bianchi identity concerned,
as will be explicitly established in the sections to follow.
Let us introduce at every point of the surface bounded

by the loop a basis {naM(t, s)} ofD−1 orthonormal vectors
that satisfy the conditions

naM(t, s)ẋM (t, s) = n
a
M(t, s)x

′
M (t, s) = 0 , (24)

where GMNn
a
Mn

b
N = δ

ab and naµ(0, s) = n
a
µ(s).

Under the normal variation

xM (t, s)→ xM (t, s)+ψM(t, s) ,

ψM(t, s) = φ
a(t, s)naM (t, s) , (25)

the change of the minimal surface to second order in φa

reads

S(2) =

∫
d2ξ
[√
g(gαβ∂αψ

a∂βψ
a+2gαβω[ab]α ∂βψ

aψb

+2ψaψa)+O(t2ψ2)
]
, (26)

where we have written ψa ≡ tφa and we have introduced
gαβ = GMN∂αxM∂βxN , while the antisymmetric quanti-

ties ω
[ab]
α are the spin connection coefficients, given by

ω[ab]α = ∂αn
a
M ·n

a
M . (27)

Details of the analysis can be found in [16]. Here, all we
need is the third order term in an expansion of ψM in pow-
ers of t. Notice that by taking into account that φ is regular
as t→ 0, we have omitted terms ∼ t4 in (26) that do not
contribute to the normal variation of the g-function.
Using the expansion (11) one easily determines

gαβ =
1

t2

(
1+ f2t2+2f ·gt3 1

2 f · f
′t3

1
2 f · f

′t3 1− 12 f
2t2− 23 f ·gt

3+O(t2)

)

(28)

and

√
g =

1

t2

(
1+
2

3
f ·gt3

)
+O(t2) . (29)

Now, the area derivative receives contributions from
antisymmetric terms. We, therefore, have to find the be-
havior of the spin connection as t→ 0. This cannot be done
in a unique way ifD> 2. What one can do is to expand the
basis vectors naM(t, s) as a power series in t:

na0(t, s) = tk
a
0 (s)+

1

2
t2la0(s)+

1

3
t3ma0(s)+ . . . ,

na(t, s) = tka(s)+
1

2
t2la(s)+

1

3
t3ma(s)+ . . . (30)

Combining these relations with (24) and using the ex-
pansion (11) we can determine

ka0 = f
a , la0 =−2(k

a · f + ga) ,

ma0 =−3

(
1

2
la · f +ka ·g+ha

)
(31)

and

ka ·c′ = 0 , la ·c′+f ′a = 0 , ma ·c′+ g′a+
3

2
ka · f = 0 .

(32)

From the orthonormality condition we find that

ka ·nb(s)+kb ·na(s) = 0 ,

2kaM ·k
b
M + l

a ·nb(s)+ lb ·na(s) = 0 ,
3

2
laM · l

b
M +m

a ·nb(s)+mb ·na(s) = 0 . (33)

With the above in place we return to our central objec-
tive and, to start with, assume that

ka ·c′ = 0→ ka = 0 , (34)
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which means that

la ·c′ =−f ′a ,

la ·nb(s)+ lb ·na(s) =−2ka0k
b
0 =−2f

af b . (35)

From these relations we conclude that

la =−f ′ac′−faf +Λabnb(s) ,

ma =−g′ac′−
3

2
(gaf +fag)+Mabnb(s) , (36)

with Λab andMab antisymmetric, but otherwise arbitrary.
The first one, Λab, enters the second order term in the

expansion (30) and consequently contributes to the nor-
mal variation of the g-function and through it to the area
derivative. The observation here is that this function can-
not be exclusively determined from the functions c′, f ,
g, . . . which, in turn, determineAmin. This can be deduced,
through scaling properties as follows: under a change of
scale c→ λc, (t, s)→ λ(t, s), it must behave as Λ→ 1

λ2
Λ,

as can be seen from (30). Taking, now, into account that
c′ → c′, f → 1

λ
f , g→ 1

λ2
g, . . . and that na(s) · c′ = 0→

c′a = 0, it becomes obvious that it is impossible to find
an antisymmetric combination of the coefficient functions
with the correct scaling behavior. The same reasoning,
in fact, justifies, a posteriori, (34). The remaining possi-
bilities are Λab = ragb− rbga or Λab = raf ′b− rbf ′a, with
ra = nai c

′
i, i = 2, . . . , D. But these are excluded because

the produced laµ are not 4-dimensional vectors. The sec-
ond quantity, Mab, must scale as Mab→ 1

λ3
Mab and con-

sequently Mab ∼ gaf b− gbfa. Through this analysis the
basis vectors are determined as follows:

na0(t, s) =−tf
a− t2ga− t3(ha−faf ′)+O(t4) ,

na(t, s) = na(s)−
1

2
t3(gaf +fag)

+
2

3
t3(g′af +fag+

2

3
g′ac′)

=
1

3
t3naMab+O(t4) . (37)

For the behavior of the spin connection we also need the
derivative n′a(s). What we know about it comes from the
orthonormality condition

na(s) ·c′ = 0→−n′a(s) ·c=−na(s) ·c′′(s) =−c′′a(s) .
(38)

Adopting the same arguments as before we conclude from
the preceding relation that

n′a(s) =−(na(s) ·c′′)c′ =−c′′ac′ . (39)

In conclusion, through the above analysis we have de-
termined that

ω
[ab]
t =

1

2
t2κ0(g

af b− gbfa)≡
1

2
t2rab , ω[ab]s =O(t3) ,

(40)

with the constant κ0 remaining undetermined at the
present level of the calculation.

Knowing the behavior of all the terms we now return
to (26) and demand the perturbed surface also to be min-
imal. This leads to the equation

∂β
(√
ggαβ∂αψ

a
)
−2
√
gψa+2

√
ggαβω[ab]α ∂βψ

b =O(t2ψ) .
(41)

To solve this equation we start from its asymptotic form as
t→ 0, treating the other terms as small perturbations. At
this point it becomes very convenient to introduce [15, 16]
the Fourier transform

φa(t, s) = φa(t, s′+h) =

∫ ∞

−∞

dp

2π
eiphφ̃a(t, p) , (42)

with s= σ+ h2 and s
′ = σ′− h2 , the point at which the area

derivative is applied. The relevant observation here is that
one is interested in large values for the variable p∼ 1

h
, since

the variable h is integrated in the vicinity of zero; cf. (8).
On the other hand, one can be convinced, by appealing

to (41), that the values of t that are involved in our an-
alysis are t ∼ 1

|p| ∼ h. With these estimations (40) can be
rewritten by retaining only those terms that are relevant to
the normal variation of the g-function. To accomplish this
task the coefficient functions must be expanded around the
point s′. The general form of such an expansion can be read
from

F (s) = F (s′)+ (s− s′)F ′(s′)+ . . .

= F (s′)+hF ′(s′)+ . . . ,

hφa(t, s) =

∫ ∞

−∞

dp

2π
eiphhφ̃a(t, p)

=

∫ ∞

−∞

dp

2π
eiphi∂pφ̃

a(t, p) . (43)

Given the above, (40) reads, in Fourier space,

L̂ab4 (t, p)φ̃
b(t, p) = L̂ab2 (t, p)φ̃

b(t, p)+ L̂ab1 (t, p)φ̃
b(t, p)+ . . . ,

(44)

where we have written

L̂ab4 ≡

(
1

t2
∂2t −

2

t
∂t−

p2

t2

)
δab , L̂ab2 ≡ f

2
(
∂2t +p

2
)
δab .

L̂ab1 ≡

{[
2f · f ′i∂p+

4

3
t(f ·g)

](
∂2t +p

2
)
+
4

3
f ·g∂t

−
3

2
f · f ′ip+ tf · f ′ip∂t

}
δab+ rab

(
1

t
−∂t

)
. (45)

The subscripts labeling the operators in the above relation
serve to signify their asymptotic behavior as |p| →∞:

L̂ab4 φ̃
b ∼O(p4) , L̂ab2 φ̃

b ∼O(p2) , L̂ab1 φ̃
b ∼O(p) . (46)

The neglected terms in (44) are of order O(p0), so their
contribution will be four times weaker than the strongest
one and thus will be irrelevant as far as we are interested in
the normal variation of the g-function.
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The solution of (44) can be written as

φ̃a(t, p) = φ̃a(0)(t, p)

+

∫ ∞

0

dt′Gp(t, t
′)
[
L̂ab2 (t

′, p)+ L̂ab1 (t
′, p)
]
φ̃a(t′, p).

(47)

Here φ̃a(0) is the solution of the homogeneous equation

L̂ab4 (t, p)φ̃
b(t, p) = 0 ,

φ̃a(0)(t, p) = (1+ t|p|)e
−t|p|φ̃a(0)(p) . (48)

The Green’s function

L̂ab4 (t, p)Gp(t, t
′) = δ(t− t′) (49)

can easily be found:

Gp(t, t
′) =

1

2|p|3
φ−(t

′|p|)[φ+(t
′|p|)−φ−(t

′|p|)]θ(t− t′)

+ (t↔ t′) , (50)

with

φ−(x) = (1+x)e
−x , φ+(x) = (1−x)e

x . (51)

The solution of the integral equation (47) can be ap-
proached through an iterative procedure:

φ̃a(t, p) = φ̃a(0)(t, p)

+

∫ ∞

0

dt′Gp(t, t
′)
[
L̂ab2 (t

′, p)+ L̂ab1 (t
′, p)
]
φ̃a(0)(t

′, p)

+negligible terms . (52)

Expanding now the result in a t-power series one can
see that the neglected terms in the above equation are of
order O(t4) and thus are irrelevant for our purposes. The
symmetric part of the solution (52) is easily determined to
be
[
1−
1

2
|p|2t2−

1

3
t3(f2|p|+ if · f ′ signp+ f ·g)

]
φ̃a(0)(p)

+O(t4) , (53)

while the contribution to the antisymmetric part is
∫ ∞

0

dt′Gp(t, t
′)

(
1

t′
−∂t′

)
e−|p|t

′
(1+ |p|t′)rabφ̃a

=−
1

3
t3
[
Γ (0, 2|p|t)+

25

12

]
rabφ̃a+O(t4) . (54)

The next step is to integrate the ‘annoying’ incomplete
gamma function:
∫ ∞

−∞

dp

2π
eiphΓ (0, 2t|p|) = 2Re lim

ε→0

∫ ∞

0

dpeiphΓ (ε, 2t|p|)

= 2Re lim
ε→0

t

2ih
Γ (ε)

[
1−

1
(
1+ ih2t

)ε

]

=
1

t
+O(h) , (55)

and thus theO(t3) antisymmetric contribution to the solu-
tion can be taken to be just

−
1

3
t3
25

12
rab =−

1

3
t3κ(gaf b− gbfa) . (56)

To obtain the final result one must take into account that
normal variations do not preserve the static gauge and,
therefore, a redefinition of the t variable is needed. Re-
peating the relevant calculation of [15], we arrive at the
following key result for the normal variations of the compo-
nents of the g-function:

δga(s)

δnb(s′)
=

∫
dp

2π
[|p|3−|p|(f2δab−3faf b)]eiph

−

[
f ·gδab−

3

2
(fagb+f bga)

+κ(fagb−f bga)

]
δ(h)+O(h) . (57)

It should be stressed, at this point, that the arbitrari-
ness of the number κ appearing in (56) and (57) is re-
lated to the arbitrary number κ0, which appears in (40) by
κ= 25

12κ0. The origin of this arbitrariness is the fact that
one cannot define uniquely an orthonormal basis on the
5-dimensional surface.2

4 Loop equation and Bianchi identity

Beginning this section we perform a first check of (22)
by using it to verify the Makeenko–Migdal (MM) equa-
tion [10], see also the extensive review expositions in [11,
12], for differentiable, non-self-intersecting Wilson loops
that are traversed only once, namely

∆̃W [C]≈ 0 , (58)

where the symbol ≈means that the finite part on the r.h.s.
is zero and the MM loop operator is defined in [11, 12] as

∆̃=

∮

C

dcν∂
c
µ

δ

δσµν(c)

= lim
η→0

lim
η′→0

∫
ds c′ν(s)

∫ s+η

s−η
ds′

δ

δcµ(s′)

×

∫ η′

−η′
dhh

δ2

δcµ(s+h)δcν(s)
. (59)

It can, now, be easily determined from (22) that

∆̃Amin = 2 lim
η→0

∫
ds c′ν(s)

∫ s+η

s−η
ds′

δ

δcµ(s′)
[tν(s)gµ(s)]

= 2 lim
η→0

∫
ds

∫ s+η

s−η
ds′
δgµ(s)

δcµ(s′)
. (60)

2 The freedom of choosing of such a basis was ignored in
a previous work, namely [21], where κ0 was arbitrarily set to 1.
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From (18) we obtain

δgµ(s)

δcν(s′)
=
δga(s)

δnb(s′)
naµ(s)n

b
ν(s
′)−Rµν(s, s

′)δ′(s− s′)

− gµ(s)tν(s)δ
′(s− s′) . (61)

One can easily check that R′µµ(s, s) = 0 and consequently

∆̃Amin = 2 lim
η→0

∫
δga(s)

δnb(s′)
na(s) ·nb(s′) . (62)

From (57) we see that

δga(s)

δnb(s′)
na(s) ·nb(s′)

=−(D−4)f ·gδ(s− s′)

+

[
3!

π

δab

(s− s′)4
+
1

π

1

(s− s′)2
(f2δab−3faf b)

]

×na(s) ·nb(s′)+O(s− s′) , (63)

and so, in 4-dimensional space,

∆̃Amin ≡ 0 . (64)

It is obvious from the derivation of the above result that
we do not need to know the antisymmetric part of the nor-
mal deviations of the g-function for the verification of the
MM loop equation. This means that the fact that the nu-
merical value of κ is unknown is of no importance, as far as
the verification of the loop equation is concerned. By jux-
taposition, for the verification of the Bianchi identity the
antisymmetric part of (57) plays a crucial role as we shall
now witness.
To this end let us refer to (18), through which we find

that

tµ(s)
δgν(s)

δcλ(s′)
− (µ↔ ν)

=
δga(s)

δnb(s′)
nbλ(s

′)t[µ(s)n
a
ν](s)

+ δ′(s− s′)t(s) ·na(s′)naλ(s
′)t[µ(s)gν](s) , (65)

which finally gives

εκλµν∂
c(s)
λ

δAmin

δσµν(c(s))

= εκλµν lim
η→0

∫ s+η

s−η
ds′
δga(s)

δnb(s′)
nbλ(s

′)t[µ(s)n
a
ν](s)

+ εκλµνt(s) ·n′a(s)naλtµ(s)gν(s) . (66)

One observes that in the first term of the above equation
only the antisymmetric part of the normal variation of the
g-function survives. As far as the second term is concerned,
we can use the arguments presented in the previous section
to write n′a =−(na · f)t. The result expressed by (57) leads
us now to conclude that

εκλµν∂
c(s)
λ

δAmin

δσµν(c(s))
= (2κ−1)εκλµνfλ(s)t[µ(s)gν](s) .

(67)

At this point, κ enters as an arbitrary constant, ren-
dering the Bianchi identity conditional. As now becomes
apparent from (27), (37) and (40), the arbitrariness of this
constant refers to the fact that we cannot connect uniquely
the orthonormal basis {naM(t, s)}, defined on the surface,
with the orthonormal basis {naµ(s), tµ(s)} defined on the
boundary. It is important to realize at the same time that
if the g-function were known, one could, in principle, com-
pute its normal variations unambiguously.
In the next section, we explicitly determine the normal

variations of the g-function for the non-trivial as well as
generic smooth (Wilson) contour configuration discussed
in [15], which goes by the name of the ‘wavy line’ config-
uration. As we shall see, the explicit result determines the
constant κ to be 1/2, as it bypasses the need of referring
to a choice of basis, {naM(t, s)}, of the form employed in
the analysis in Sect. 3 and leading to the result expressed
by (67). Given, now, that κ, as was introduced in this sec-
tion, does not depend on the specific form of the (smooth)
Wilson loop boundary, we consider the relevant result to be
an independent way to determine the value of κ.

5 Wavy line Wilson contour
and the Bianchi identity

The wavy line approximation [15] is specified by the as-
sumption that the closed Wilson contours entering the
gauge field–string duality are described by

c1(s) = s , ci = φi(s) , i= 2, . . . , D , (68)

with the transverse components φi(s) being very small.
Our objective in this section is to expand, to fourth order,
Amin in powers of the φi. Following [15], we begin with the
Hamilton–Jacobi equation for the minimal surface, which
for y(s) = y→ 0 can be written as

∂Amin

∂y

=−
1

y2

∫
ds

√

c′2−y4
(
δAmin

δc(s)

)2

=−
1

y2

∫
ds

√

c′2−y4
(
δAmin

δφ(s)

)2
−y4
(
φ ·
δAmin

δφ(s)

)2
,

(69)

where, for the last step, we used reparametrization invari-
ance:

c′ ·
δAmin

δc(s)
= 0 . (70)

To continue we now assume that the minimal area can
be cast into the following general form:

Amin =
∞∑

n=0

1

n!

∫
ds1 . . . dsnΓi1...in(s1, . . . , sn|y)

×φi1(s1) · · ·φin(sn) . (71)
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Inserting the above equation into (69), expanding the
square root and taking the Fourier transform of both sides,
one finds

Amin =
L0

y
+
1

2

∫
dp

2π
Γ̃2(p|y)φ̃i(p)φ̃i(−p)

+
1

8

∫
dp1
2π
· · ·
dp4
2π
Γ̃4(p1, p2, p3, p4|y)

× φ̃i(p1)φ̃i(p2)φ̃j(p3)φ̃j(p4)2πδ

( 4∑

i=1

pi

)
+O(φ6) .

(72)

In the above expression L0 is the length of the contour
(along the direction 1) and we have written

Γi1i2(s1, s2|y)

= δi1i2Γ2(p|y)

= δi1i2

∫
dp

2π
eip(s2−s1)Γ̃2(p|y) ,

Γi1i2i3i4(s1, s2, s3|y)

= (δi1i2δi3i4 +perms)Γ4(s2− s1, s3− s1, s4− s1|y) ,

Γ4(s2− s1, s3− s1, s4− s1|y)

=

∫
dp1
2π
· · ·
dp4
2π
2πδ

( 4∑

i=1

pi

)

× exp

(
i
4∑

i=1

pisi

)
Γ̃4(p1, p2, p3, p4|y) . (73)

The functions Γ̃2 and Γ̃4 have been determined in [15].
Here we present only the leading, finite part of their expan-
sion in powers of y:

Γ̃2 =−|p|
3 , (74)

Γ̃4 = Φ(p1, p3)+Φ(p1, p4)+Φ(p2, p3)+Φ(p2, p4)

−Φ(p1, p2)−Φ(p3, p4)−F (p1, p2, p3, p4|y) ,
(75)

with

F =

[
2
εp1εp2εp3εp4+1

∆3
+
εp1εp2εp3εp4
∆2

( 4∑

i=1

1

|pi|

)

+

∑
i<j |pipj |

Π∆
−
∆

Π

]
Π2 ,

Φ(p1, p2) =

[
2
εp1εp2
∆3

+
εp1εp2
∆2

(
1

|p1|
+
1

|p2|

)
+
1

∆

1

p1p2

]
Π2

(76)

and

εp = sign p , ∆=
4∑

i=1

|pi| , Π = p1p2p3p4 . (77)

Given the above relations our first check will refer to the
normal variations of the g-function. In particular, we shall
prove that no term ∼ δ′(s1− s2) appears in the transverse

variation of the g-function and that the coefficient of the
antisymmetric part is 12 . The quantity of interest reads

δga(s1)

δnb(s2)
= naµ(s1)n

b
ν(s2)

δgµ(s1)

δcν(s2)

= nai (s1)n
b
j (s2)

(
φi(s1)φj(s2)

δgi(s1)

δc1(s2)

−φi(s1)
δg1(s1)

δcj(s2)
−φj(s2)

δgi(s1)

δc1(s2)
+
δgi(s1)

δcj(s2)

)
,

(78)

where we have taken account of the fact that c′µn
a
µ = 0⇒

na1 =−φ
′
in
a
i . It should also be noted that in the preceding

equation we have written s1 = s+
h
2 and s2 = s−

h
2 and for

convenience we shall eventually integrate both sides over s.
Using now reparametrization invariance, we write

g1 =−φ
′
igi =

1
√
c′2
φ′i
δAmin

δφi
,
δAmin

δc1
=−φ′i

δAmin

δφi
.

(79)

Substituting (79) into (78) and keeping terms up to second
order, we find

δga(s1)

δnb(s2)
= nai (s1)n

b
j (s2)

(
δ′(s1− s2)Aij −

δ2A
(4)
min

δφi(s1)δφj(s2)

)

+nai (s1)n
b
j (s2)Σij+O(φ

4) , (80)

where

Aij = (φ
′
j(s1)−φ

′
j(s2))

δA
(2)
min

δφi(s1)
+φ′j(s2)

δA
(2)
min

δφ′i(s2)

−φ′i(s1)
δA
(2)
min

δφj(s1)
(81)

and

Σij =
1

2
φ′k(s1)φ

′
k(s1)

δ2A
(2)
min

δφi(s1)δφj(s2)

−φ′i(s1)φ
′
k(s1)

δ2A
(2)
min

δφk(s1)δφj(s2)

−φ′j(s2)φ
′
k(s2)

δ2A
(2)
min

δφi(s1)δφ′k(s2)
. (82)

In the above equations the expressions A
(2)
min and A

(4)
min re-

fer to the minimal area estimation up to second and fourth
order, respectively, and they can be read from (72). As we
are interested only in the antisymmetric part of the normal
variations (80), we shall ignore the contribution from the
term (82), since it is purely symmetric. It is, now, easy to
determine that

δ2A
(2)
min

δφ̃i(k)δφ̃j(k′)
= δij2πδ(k+k

′)Γ̃2(k) (83)
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and

δ2A
(4)
min

δφ̃i(k)δφ̃j(k′)

=

∫
dp1
2π

dp2
2π
2πδ(p1+p2+k+k

′)

×

(
M̃(p1, p2, k, k

′)+
1

2
Γ̃4(p1, p2, k, k

′)δij

)
φ̃i(p1)φ̃j(p2)

+

∫
dp1
2π

dp2
2π
2πδ(p1+p2+k+k

′)

× Λ̃(p1, p2, k, k
′)φ̃i(p1)φ̃j(p2) , (84)

with

M̃ ≡ Φ(p1, p2)+Φ(k, k
′)−F (p1, p2, k, k

′) (85)

and

Λ̃≡ Φ(k, p1)+Φ(k
′, p2)−Φ(k, p2)−Φ(k

′, p1) . (86)

Taking the Fourier transform of (83) we find

δ2A
(2)
min

δφi(s1)δφj(s2)
=

∫
dk

2π

∫
dk′

2π
e−iks1−ik

′s2
δ2A

(2)
min

δφ̃i(k)δφ̃j(k′)

=−δij

∫
dk

2π
|k|3e−ik(s1−s2) , (87)

and consequently

δ2A
(2)
min

δφi(s)δφj(s2)
=

∫
ds′ Γ2(s− s

′)φi(s
′) ,

Γ2(s) =−

∫
dk

2π
|k|3e−iks . (88)

One now observes that only the last term on the r.h.s.
of (84) gives an antisymmetric contribution, so the first one
can be ignored. Employing once again the Fourier trans-
form in (84), one sees that

δ2A
(4)
min

δφi
(
s+ h2

)
δφj
(
s− h2

)

=

∫
dq

2π

dk

2π

dp1
2π

dp2
2π
2πδ(p1+p2+ q)

× e−iqs−ihkΛ̃

(
p1, p2, k+

q

2
,−k+

q

2

)
φ̃i(p1)φ̃j(p2) .

(89)

Since we are interested in the limit |h| → 0, we shall ex-
plore the limit |k| →∞ in the above relation. As pointed
out already, it is enough for our purposes to examine the
version of (78) integrated over s, so we can consider the
case q = 0, p1 =−p2 ≡ p in the last relation.

Using (76) and (86) we determine

Λ̃(p,−p, k,−k) = 4Φ(p, k)

= 4

[
εpεk

4(|p|+ |k|)3
+

εpεk

4(|p|+ |k|)2

(
1

|p|
+
1

|k|

)

+
1

2(|p|+ |k|)pk

]
p4k4

= εpεk|p|
5

[
x4

(1+x)3
+
3x3

1+x

]
, (90)

where [15] we have set x= |k||p| . Upon taking the limit x→
∞ we find that

Λ̃(p,−p, k,−k) = εpεk|p|
5

[
3x2−2x+O

(
1

x

)]

= 3p3k2 signk−2p|p|3k+O

(
1

k

)
.

(91)

The first term gives a zero contribution in the limit h→ 0,
while the second one leads to

∫
ds

δ2A
(4)
min

δφi(s+h/2)δφi(s−h/2)

=

∫
dk

2π

∫
dp

2π
e−ihkΛ̃(p,−p, k,−k)φ̃i(p)φ̃j(−p)

=−2iδ′(h)

∫
dp

2π
|p|3φ̃i(p)φ̃j(−p)

= δ′(h)

∫
dsds′[φ′i(s)φj(s

′)−φi(s)φ
′
j(s
′)]Γ2(s− s

′)

=−δ′(h)

∫
ds

[
φ′j(s)

δA
(2)
min

δφi(s)
−φ′i(s)

δA
(2)
min

δφj(s)

]
. (92)

This term exactly cancels the term that appears in (80)
in the limit h→ 0. Thus, it is confirmed, in the framework
of the wavy line approximation, that no term ∝ δ(h′) ap-
pears in the transverse variation of the g-function. The
first term in (81) reads, in the limit h→ 0,

(φ′j(s1)−φ
′
j(s2))

δA
(2)
min

δφi(s1)
=hφ′′j (s)

δA
(2)
min

δφi(s)
+O(h2)

=−hφ′′j (s)gi(s)+O(h
2)+O(φ4).

(93)

Thus, the antisymmetric part of the transverse variation
reads

−
1

2
nai n

b
j (φ

′′
i gj−φ

′′
j gi) , (94)

which leads to the conclusion that the value of the constant
κ that appears in (67) of Sect. 5 is 1/2. As this constant
is independent from the details of the contour that forms
the boundary, we consider the result (94) as valid for an
arbitrary contour and thereby establish the validity of the
Bianchi identity, equivalently zig zag invariance, for the
string–gauge field connection scenario promoted in [7] by
Polyakov.
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6 Concluding remarks

In this work, we have verified a property, which is import-
ant from the standpoint of physics, of theWilson loop func-
tional in the framework of the AdS/CFT – as promoted
in [7] in the λ→∞ limit and concretely deliberated in [15,
16]. In particular, we established a condition for the valid-
ity of the Bianchi identity, which, in turn, solidifies the con-
sistency of the string–gauge field connection in the sense
that it is compatible with zig zag invariance and hence
secures the validation of the Stokes theorem. This very
important issue has been explicitly demonstrated in the
context of the wavy line approximation, which sufficiently
describes, in a general manner, a smooth Wilson loop con-
tour. From the physics point of view, what we find espe-
cially worth noting is that the results in this paper have
been obtained without any knowledge of the g-function.
The latter is expected to carry all the dynamics in any par-
ticular investigation of interest one wishes to conduct in
the context of the string-based theoretical scheme adopted
in this work. Given, now, that string theory per se is for-
mulated in the framework of first quantization, it seems
realistic to further pursue the issue of the string–gauge field
relation by employing first quantization methodologies on
the field side. The strategy we specifically have in mind
to apply for pursuing such a connection would involve, on
the side of gauge field theory, a first quantization, world-
line casting of gauge field systems, with which we happen
to be quite familiar (see, e.g., [20] for a typical example).
The envisioned focus of attention in such a study is ex-
pected to be placed on the g-function in the sense of con-
necting it with (non-perturbative) dynamical behaviors in
gauge field systems. Preliminary indications seem to point
to a direction according to which the g-function is directly
linked with the spin–field interaction dynamics, while per-

turbative (local) dynamics are associated to the formation
of cusps on the Wilson contour. Such speculations are, of
course, subject of concrete scrutiny, which we intend to ex-
plore in the immediate future.
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